Data Exports: Twitter

Page
Page-level metrics will give you data aggregated at a daily level, so you can look
back and see what trends are occurring on your Page over time.

Tweet

Tweet-level metrics show the scope and strength of influence of a tweet, which gives
you the ability to analyse the content you're delivering and how well it is resonating
with not only your community, but also the potential audience accessible through
your community.

Hashtag
Hashtag-level metrics indicate the amount of attention and engagement a certain
topic/event is able to evoke.

Media
Video-level metrics helps you understand how media contents contribute to your
overall reach and engagement.

How do | extract tweets and comments?

Twitter commments, as well as other Twitter data, can be extracted by making use of a
Twitter developer's account and R.

First, apply for a Twitter developer account at https./developer.twitter.com and
complete the required steps in the application. Once approved, visit your developers
page and create an app.

Tap into

what's happening.

Publish and analyzs Tweets, opfimizs ads, and craate unigue cistomer
experiences.

https://developer.twitter.com/

Crpariantion s

Orgarization weirte AL

L T e

Now you have a new app! You can always find it on the apps page
(developer.twitter.com/en/apps) and click on the “Details” icon to view.

Finally, collect the Application Programming Interface (API) keys under Keys and
tokens. Generate your access token and access token secret. All the four keys on this
page will be used, so keep them somewhere.

............

Build a connection between R and Twitter

Install R and R studio first on your device. Both are free!

Open R studio. Now, you want to make use of your Twitter developer’s status
through R commands, so you give R access to your developer's account.

RStudio

File Edit Code View Plots Session Build Debug Profile Tools Help

O - Of| -

Console Terminal Jobs

R version 3.6.2 (2019-1
Copyright (C) 2019 The
Platform: x86_64-w6d-mi

R is free software and
You are welcome to redi
Type 'license()' or '"1i

R is a collaborative pr
Type 'contributors()" f
"citation()' on how to

Mew Session

Intermupt R

Terminate R...
Restart R
Set Working Directory

Load Workspace...
Save Workspace As...

Clear Workspace...

Quit Session...

Ctrl+Shift-F10

3

Ctrl+Q

uti

no
To Source File Location

To Files Pane Location

Choose Directory..

Ctrl+Shift+H

ons.

Type 'demo()" for some demos, "help()’ for on-line help, or
"help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

[workspace Toaded from ~/.RData]

Install package “rtweet” and load it

install.packages("rtweet")

library(rtweet)

Store all the API keys

api_key <-

" "

api_secret_key <-".."

access_token <-".."

*This is the R studio interface. The “Console" tab is where you type your commands
and get R’s feedback. But first, to make your future work easier, set up a work
directory where you intend to store all related documents.

File

Now the basic set-ups are done and you can start dealing with Twitter. Click in the
console and start typing your commands. To finish and run a command, hit the

Enter key.

access_token_secret <- ".."
#replace the ... with corresponding keys and tokens.
Authenticate the connection
token <- create_token (
app = "NAMEOFYOURAPP", #use the name you entered for your app
consumer_key = api_key,
consumer_secret = api_secret_key,
access_token = access_token,
access_secret = access_token_secret)

This will create an environment in the workspace called “token”, and you should
see the values of your API keys in the “Environment” tab in the upper-right part of
R studio. That means a connection between R and Twitter has been built
successfully!

Environment History Connections |
g “* mport Dataset ~ °, List = o
d':. Global Environment ~

sb7 99 obs. of 90 variables -
sh8 100 obs. of 90 variables

sh9 99 obs. of 90 variables

Token EnyiTommenT]

total 199 obs. of 90 variables

totald 4757 obs. of 90 variables

tweets List of 200

tweets. df 200 obs. of 16 variables

[VaTues
access_token
access_token_sec..
api_key
api_secret_key

Extract relevant tweets (regular approaches)

To search for tweets that are relevant to a topic (e.g. according to
hashtags)

DF <-search_tweets (q="YOURKEYWORD", n=NUMBER OF TWEETS)

You'll have a data frame that contains the requested data. But only recent
tweets (6-9 days) can be extracted with the standard API product! To extract
all it is NECESSARY to update to a more advanced API package. See advanced
approaches. You can click on the data frame in the "Environment tab” to view
the dataset.

Alternatively, to extract tweets and replies from a certain account
DF<-get_timeline(q="@SCREENNAME", n=NUMBER OF TWEETS)

Note that you need to search by the screen name (the one starting with @),
NOT the page name.

You can set the n to a larger number to make it convenient. However, there's
an upper limit of 3,200 tweets.

If you want to extract historical comments rather than tweets, there's no
direct way to do that with regular approaches. But you can turn to advanced
approaches in the next section.

Extract comments (advanced approaches)

The regular approaches are handy, but there are obvious limitations when you
want to extract comments. The first approach does give you a sheet
containing comments, but it has a strict time restriction; the second approach
does not allow you to see comments from other users besides the account of
interest. Therefore, you may want to upgrade to an advanced developer
toolkit. APl Sandbox can be a good choice because it's FREE (bad news is that
it requires more manual input if you expect to have large data). You do this by
going to your developer's webpage and click on the Products tab. The
Sandbox has two versions: 30-Days and full archive. Choose one (or both)
according to your needs and give the new dev environment(s) a label (random
name).

appening.

imize ads, and create unique customes

Products / Overview

APIs and tools to tap
into what's happening

Tie Twits Devaloper Plattorm proviclss 178 12012 you naed to build praducts with
Twittar dsts, coasts sdvartizing campsignz on Twittsr, and buils Titte- into your
procusts. Gur data products. Ads AP, and publizhsr tacls make It easier 19 gat the most
out of Twittsr.

Data products

Scale your Twitter data access

Standard APls Premium APIs Enterprize APls

T, e A0 i

Figgiest s 5 cacaimss cancd
rabaatilly 3 lheres vt deperd

el o et el e,

T concat, o B

o b, Pt o
st bervend premiven and
red e reliabis socey,
st b et
sl

A emss comes with
izt szl
v e cal sLppniL

Decumentetian ¥ Contuct mntrprime nnban ¥

Pricing
Forums > =

Farums 3

Introducing Twitler premium APls

Apply for access

' We're excited to introduce Twitter premium APis.

O hew e AT bring the ity d wesons of oo

O Hixeve v

Ciinious aboul Tarter premmiem AFIST Hers's fhe
sriond

Gel started with Twitter APls and tools

Apply for access

All new covelopars must apply for a developer acoount to access Twitter APls.

Appty far 3 dealsgar sacan: [T W PTEPRETNN

Standard APls Premium APls Enterprise APls Ads APls

Sl T AR e L o Aot the Tl S S1Y g painee @

snalabie acnees o Tiitter Nghestlevsi of access and programmatic winy b
Innecran whn ha Todtmar Az
i

Apoly far Ads APl awress =

Now that you have chosen your product(s), you can now see what they will
enable you to do on your developer’'s dashboard
(https//developer.twitter.com/en/dashboard). This is also where you'll see the
usage of your products.

To activate a product, set up a dev environment and label it.

https://developer.twitter.com/en/dashboard

Seavch Tawets 30-Days - Seedbos l

Set up Search Tweets: 30-Days dev environment

Dev environment label

BeCreativeHers 1

App

The above example is based on Sandbox 30-Days, but you can choose according to
your needs and budget. Sandbox is a premium offer, albeit free.

After completing the setup, you will be redirected to the Dashboard and you will
notice that the line in red “you must first set up a dev environment..." under your
selected product is gone. This means that you have successfully activated the
product and are ready to proceed to advanced extraction!

Search through the entire history (full archive)

DF<- search_fullarchive (g="@SCREENNAME", n=100, fromDate =
YYYYMMDDHHMM, toDate=YYYYMMDDHHMM, env_name = “YOURLABEL")

you can request data 50 times per month, 100 tweets per request, meaning
that n has to be no larger than 100.

you don't always need to havethe fromDate term in your command,
especially when you're going backwards into history from a later date for 100
tweets.

Search through the past month (30-Days)

DF<- search_30day (q="@SCREENNAME", n=100, fromDate =
YYYYMMDDHHMM, toDate=YYYYMMDDHHMM, env_name = “YOURLABEL”)

You can request data 250 times per month, 100 tweets per request.
Again, n<=100 and fromDate isn’t always necessary.

This only gives you data from the past month, and the full archive option can
do the same for you. But it's useful when you need past month’s data
urgently and you know there were more than 5000 tweets where the page
was tagged or replied to.

Note that the data you get will contain 1) comments under the page’s tweets, 2)
retweets of the page’s tweets and 3) tweets created by other users where the page is
tagged. However, it's not hard to tell which ones are comments and filter out the rest
(see Filtering section for details).

With the upper limits for the number of tweets you may get per request though, you
might have to extract multiple times when there are too many tweets. In that case,
you can merge all the datasets into a big, neat one. Here is one of the simple ways to
do that.

FINALDATA<-rbind(DFI, DF2,.., DFn)

Transfer data to a csv file

install package "data.table" and load it
Install.packages(“data.table")
library(data.table)

use the "fwrite" function

fwrite(FINALDATA, file = "CSVNAME.csv")

This is one way to do things. Regular way of write.csv does not work because
the data frame contains list variables.

Alternative way (less efficient):
sapply(DF,class) #see which variables are list-type
unlist(DF$COLUMNNAME) #unlist those variables OR
toString(DF$COLUMNNAME) #transfer the variables to string-type
write.csv(DF,"CSVNAME.csv")

The csv file will be automatically saved to your work directory. Now you have your
data!

